OPeraTIC | Boosting the adoption of Ultrashort Pulsed Laser large scale structuring with an agile, dexterous and efficient manufacturing platform

Summary

OPeraTIC will develop a highly efficient and modular manufacturing platform to boost the adoption of high-power Ultra-Short Pulsed Lasers, as a sustainable alternative to current surface processing. The OPeraTIC open, interoperable and expandable architecture will tackle the industrial entrance barriers of laser microstructuring of large 3D parts.

OPeraTIC provides the required productivity/quality through different developments:

  1. combination of advanced optical modules for beam transport and manipulation
  2. dexterous and precision robotic manipulator.
  3. AI-enhanced process planning and adaptability. OPeraTIC proposes a modular and automated routing of optical components guaranteeing versatility and replicability, i.e beam delivery (polarization maintaining fiber), management (dynamic control beam shaping) and metrology (novel optical setups for product & process monitoring).


On top of that, OPeraTIC will develop a system architecture for the upscaling of USPL machines to large envelope and complex trajectories, driven by a novel RAMI4.0-compliant controller (merging dexterous manipulation with high level CNC motion accuracy and full synchronization of motion, laser process and quality control).

Finally, OPeraTIC proposes an I4.0-compliant platform for systematic data exchange and integrated bidirectional communication (Automation-ML and OPC-UA standards) between real environment and its digital representation. This end-to-end seamless connection enhances a Machine Intelligence Framework for the definition of Zero Defect Manufacturing strategies, empowered by AI and real-time monitorization and control, for process optimisation.

A consortium of 4 top Research Institutions and 7 laser sector industry partners, backed by 2 adoption-oriented partners, will demonstrate OPeraTIC potential on relevant and high impact large-scale use-cases by 4 industrial end-users in the automotive, aeronautic, lighting, and white goods sectors.

Results, demos, etc. Show all and search (1)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101058409
https://operatic.eu/
Start date: 01-10-2022
End date: 31-03-2026
Total budget - Public funding: 6 113 211,00 Euro - 6 113 210,00 Euro
Cordis data

Original description

OPeraTIC will develop a highly efficient and modular manufacturing platform to boost the adoption of high-power Ultra-Short Pulsed Lasers, as a sustainable alternative to current surface processing. The OPeraTIC open, interoperable and expandable architecture will tackle the industrial entrance barriers of laser microstructuring of large 3D parts.

OPeraTIC provides the required productivity/quality through different developments: (i) combination of advanced optical modules for beam transport and manipulation (ii) dexterous and precision robotic manipulator. iii) AI-enhanced process planning and adaptability. OPeraTIC proposes a modular and automated routing of optical components guaranteeing versatility and replicability, i.e beam delivery (polarization maintaining fiber), management (dynamic control beam shaping) and metrology (novel optical setups for product & process monitoring).

On top of that, OPeraTIC will develop a system architecture for the upscaling of USPL machines to large envelope and complex trajectories, driven by a novel RAMI4.0-compliant controller (merging dexterous manipulation with high level CNC motion accuracy and full synchronization of motion, laser process and quality control). Finally, OPeraTIC proposes an I4.0-compliant platform for systematic data exchange and integrated bidirectional communication (Automation-ML and OPC-UA standards) between real environment and its digital representation. This end-to-end seamless connection enhances a Machine Intelligence Framework for the definition of Zero Defect Manufacturing strategies, empowered by AI and real-time monitorization and control, for process optimisation.

A consortium of 4 top Research Institutions and 7 laser sector industry partners, backed by 2 adoption-oriented partners, will demonstrate OPeraTIC potential on relevant and high impact large-scale use-cases by 4 industrial end-users in the automotive, aeronautic, lighting, and white goods sectors.

Status

SIGNED

Call topic

HORIZON-CL4-2021-TWIN-TRANSITION-01-03

Update Date

27-10-2022
Geographical location(s)
Structured mapping
Unfold all
/
Fold all