Z-Fact0r mapped on
Measurement, sensing, condition and performance monitoring technologies

General desciption of Measurement, sensing, condition and performance monitoring technologies:

Continuous monitoring of the condition and performance of the manufacturing system on component and machine level, enables sustainable and competive manufacturing, also by introducing autonomous diagnosis capabilities and context-awareness. Detecting, measuring and monitoring the variables, events and situations will increase the performance and reliability of manufacturing systems. This involves advanced metrology, calibration and sensing, signal processing and model-based virtual sensing for a wide range of applications, e.g. event pattern detection, diagnostics, anomaly detection, prognostics and predictive maintenance.

Relevant:

Comment:

Z-DETECT is the first strategy of the Z-Fact0r solution: the detection strategy consists of detecting any machining process anomaly or instability through process monitoring by means of controlled variables called critical process variables (CPVs). In particular, this strategy is invoked when a defect is being generated after the adaptation of the parameters. In such a scenario, an alarm is being triggered to flag the parameters that resulted in a defect. By mapping the true reasons, the system will be able to avoid having more generated defects by weighting the system model.

Apart from the inspection of the product from which the defect is being observed, the strategy involves more actions and processes to deal both with the generation of the detected defect, and its propagation to the next stages.

Z-PREDICT strategy is triggered when a defect is recognised during the Z-DETECT stage. The events detected from the physical layer of the system are engineered into high value data that will stipulate new and more accurate process models. Such an unbiased systems behaviour monitoring and analysis provides the basis for enriching the existing knowledge of the system (experience) learning new patterns, raising attention towards behaviour that cause operational and functional discrepancies (e.g. alarms) and the general trends in the shop-floor.

The more the data pool is being increased the more precise (repeatability) and accurate the predictions will be. The estimations for the future states involve the whole production line, e.g. machine status after x number of operations and/or quality of the products for given set of parameters.

The system will predict with high confidence the expected quality and customer satisfaction, allowing modifications to the parameters before the production of the products. In addition, Z-Fact0r can operate in the reverse mode, i.e. insert a Customer Satisfaction Goal and control the parameters accordingly to achieve this target.

The ability of Z-Fact0r to optimise the manufacturing processes according to certain/target quality levels and/or customer satisfaction is the key innovation to fulfil the industrial requirements.

No additional information available