Z-Fact0r mapped on
Data processing

General desciption of Data processing:

Data processing is, generally, the collection and manipulation of items of data to produce meaningful information (https://en.wikipedia.org/wiki/Data_processing)

Comment:

DATAPIXEL provides the information associated to the defect detection in the manufacturing parts selected. This information is used as an input for developing the defect detection algorithms of Z-Fact0r solution. Based on this input, a data conditioning methodology has been developed to extract information concerning to the defect position and type. This information will be used as baseline for the model validation, via comparison with the respective simulation results.

The procedure that has been used is the following:

  • Image-based feature extraction: Convolutional Neural Networks (CNN) and Variational Auto Encoders (VAE) used as feature extractors. CNNs will define the appropriate features that have been used for the classification between healthy and defected parts, and VAEs will be utilized to distinguish that can be used for image generation.
  • Feature selection: An efficient filter feature selection (FS) method was developed for selecting informative and non- redundant feature subsets. In addition to enhanced accuracy rates and dimensionality reduction, the method have reasonably low computational demands. A robust and computationally efficient evaluation criterion with respect to patterns was defined allowing us to assess the redundancy between the features. The proposed FS technique was performed on a forward selection basis handling simultaneously both the discrimination power and the complementary characteristics between the extracted features. To decide on the number of retained features, a termination condition was finally introduced, thus avoiding the trial-and-error procedure usually employed in the common FS techniques of the literature.
  • Classification: The selected features were input in a virtual classification module. The role of this module is to provide a decision on the workpiece condition. The technologies used were Artificial Neural Networks (ANN) and deep learning algorithms.