Relevant:

    • Results:

      The material manufacturer stores in the platform the information concerning the production of a specific lot, including production quality control information. The work contractor is informed about the type and amount of material that are shipped to the construction side with estimated time of arrival. If some delays occur, the corresponding application running on ZDMP platform provides an assessment of the delay’s impact on the schedule and suggestions/recommendation for rescheduling.

    • Results:

      To be able to make prediction and automated quality assessment, process data need to be gathered and presented in the form suitable for processing. Process data are gathered from various sensors and smart meters, as well as from PLCs at MRHS and automatically uploaded to the database. As the production cycle takes around 2 minutes, subsequently data are uploaded every 2 minutes. The ultimate goal is to receive the anomaly warnings close to real-time.

      The machine centres operating within the plant are equipped with sensors (e.g. controlling vibrations, power consumption, etc.) supplying the process data. On the other hand, industrial computers controlling the machine also provide additional information about production process, such as process times, machine status and cylinder block type in production. All these data are captured and stored within the database to be further analysed on abnormalities and to provide recommendations on changing of certain parameters to recover production process.

      The sensors deployed on the FORM side are used to aquire the process and the equipment data. These data are sent and stored on the ZDMP platform that is used to detect the abnormalities and failures right after they occur and immediately inform the operator, but also to be able to predict and avoid further malfunctions. The components of the ZDMP platform are used to detect any deviations from the normal production process.

      The parameters of each manufacturing operation are reported to the ZDMP platform. Within ZDMP platform the parameters are analysed to identify, if selected parameters will result in the good quality and if not, how the parameters can be changed.

      he collision avoidance software relies on the 3D models acquired by scanning of the working area. However, before the 3D model can be built the scanning results, also called “cloud of points”, are cleaned and processed.

      The X-Ray machine will be deployed at the CONT factory for quality analysis improvement and in-time defects detection. The analysis will be applied to materials and components used within the production process. Before the process start, machine requests the inspection program from ZDMP platform, if one is available, the process starts automatically.

      Usually the assembling of electronic components within the CONT is performed using 6-11 working stations. AS the workstations can be from different manufacturers and have no direct connection, the goal of ZDMP platform is to provide a needed middleware and services for centralized assembly line control by acquiring data from different workstations.

      The test check stations along the assembly line equipped with the cameras serving the goal of optical quality control. Data in the form of images taken within these check stations is a valuable resource that is used not only to check the quality of product, but also to improve the efficiency of quality testing programs. The images taken allow detecting, for instance, defects related to the shape of the product.

      ZDMP platform has the goal to improve and automate the quality check on every stage of the stone slabs and tiles production. Reduce, where possible, the human involvement in the quality check to minimum, e.g. control of the wearing out of the cutting blades. Both the data about equipment performance, as well as material scanning data are utilized. Moreover, CEI machines also provide the data from cameras and projectors used to optimize the cutting process and save material.

      The quality assurance process will be supported by the ZDMP services for steel width detection, tube shape and horizontal and vertical weld of the steel sheet quality control.

    • Results:

      In some cases, FORD production engineer has to contact machine builder to get the recommendations on improving the machining process, while sending the process data to the equipment manufacturer. On the EXTE side the data undergo further analysis to provide recommendation on production process improvement. The recommended actions are manually introduced into the ZDMP platform. Afterward, the platform can assess the effectiveness of provided recommendations and improve its knowledge base.

      The operator is involved in the working area scanning process. Afterwards the scanning results can be automatically sent to the ZDMP platform to be further processed and converted into the .stl format.

      After the inspection process finished, a report is produced and if the product or material corresponds to the specifications the production process continues, but if some deviations are detected, report is sent to the operator for detailed check.

      The assembly process is mostly automated. However, some manufacturing stages, as well as some quality operations are performed manually. In this regard, the production process can be improved when quality and performance details can be delivered in time and to the right person.

      In the case of the negative automatic test, operator performs the manual check of the product comparing it with the reference images. The operator decisions with corresponding images are collected and stored to learn or extract the defects types and acceptance limits.

      One of the goals of the use-case is to minimize the human involvement in the quality assessment process. However, it is not always feasible, as for instance to detect natural defects of material (stone), but still operator can get significant assistance from ZDMP platform and corresponding services to automatically detect some defects.

      Each user will have different levels of interaction with the ZDMP platform. Both contractor and supervisor should have access to the construction schedule, but their own task schedules should only be accessible to each of them. Similarly, the Supplier will not have access to the Supervisor or Works Contractor’s areas and vice-versa.

      Through utilization of ZDMP platform, the operator will get a notification, if a defect is detected. This releases the quality operator from their cursory monitoring task, and it is moved into a reactive role. Before, the operator was in charge for manual detection of possible defects. In its turn, ZDMP platform has the goal to reduce the load on operator and make the production process and quality control more self-reliant.