North American Industrial CyberSecurity Standards


This document provides guidance on how to secure Industrial Control Systems (ICS), including Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC), while addressing their unique performance, reliability, and safety requirements. The document provides an overview of ICS and typical system topologies, identifies typical threats and vulnerabilities to these systems, and provides recommended security countermeasures to mitigate the associated risks.

ICS cybersecurity programs should always be part of broader ICS safety and reliability programs at both industrial sites and enterprise cybersecurity programs, because cybersecurity is essential to the safe and reliable operation of modern industrial processes. Threats to control systems can come from numerous sources, including hostile governments, terrorist groups, disgruntled employees, malicious intruders, complexities, accidents, and natural disasters as well as malicious or accidental actions by insiders. ICS security objectives typically follow the priority of availability and integrity, followed by confidentiality.

https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

The Framework focuses on using business drivers to guide cybersecurity activities and considering cybersecurity risks as part of the organization’s risk management processes. The Framework consists of three parts: the Framework Core, the Implementation Tiers, and the Framework Profiles. The Framework Core is a set of cybersecurity activities, outcomes, and informative references that are common across sectors and critical infrastructure. Elements of the Core provide detailed guidance for developing individual organizational Profiles. Through use of Profiles, the Framework will help an organization to align and prioritize its cybersecurity activities with its business/mission requirements, risk tolerances, and resources. The Tiers provide a mechanism for organizations to view and understand the characteristics of their approach to managing cybersecurity risk, which will help in prioritizing and achieving cybersecurity objectives.

While this document was developed to improve cybersecurity risk management in critical infrastructure, the Framework can be used by organizations in any sector or community. The Framework enables organizations – regardless of size, degree of cybersecurity risk, or cybersecurity sophistication – to apply the principles and best practices of risk management to improving security and resilience.

The Framework provides a common organizing structure for multiple approaches to cybersecurity by assembling standards, guidelines, and practices that are working effectively today.

https://www.nist.gov/cyberframework

The Cybersecurity Framework (CSF) Version 1.1 implementation details developed for the manufacturing environment. The “Manufacturing Profile” of the CSF can be used as a roadmap for reducing cybersecurity risk for manufacturers that is aligned with manufacturing sector goals and industry best practices. This Manufacturing Profile provides a voluntary, risk-based approach for managing cybersecurity activities and reducing cyber risk to manufacturing systems. The Manufacturing Profile is meant to enhance but not replace current cybersecurity standards and industry guidelines that the manufacturer is embracing.

https://csrc.nist.gov/publications/detail/nistir/8183/rev-1/final

 

Internet of Things (IoT) devices often lack device cybersecurity capabilities their customers organizations and individuals—can use to help mitigate their cybersecurity risks. Manufacturers can help their customers by improving how securable the IoT devices they make are by providing necessary cybersecurity functionality and by providing customers with the cybersecurity-related information they need. This publication describes recommended activities related to cybersecurity that manufacturers should consider performing before their IoT devices are sold to customers. These foundational cybersecurity activities can help manufacturers lessen the cybersecurity-related efforts needed by customers, which in turn can reduce the prevalence and severity of IoT device compromises and the attacks performed using compromised devices

https://csrc.nist.gov/publications/detail/nistir/8259/final