MASTERLY | Nimble Artificial Intelligence driven robotic solutions for efficient and self-determined handling and assembly operations

Summary

Over the last years, production has been shifted from mass production to customization. The conventional production lines, traditionally focused on one product variant or one family of products do show their limitations to cope with the new needs. Moreover, unprecedented worldwide events, such as the recent pandemic crisis, indicated even more the need for flexible production systems that can rapidly switch production to a totally different one (e.g. automotive manufactures had to produce respirators, facemasks etc.).
As a response, MASTERLY aims to develop flexible robotic solutions, constituting of modular grippers combined with state-of-the-art robotic technologies, such as mobile, high and low payload industrial and collaborative robots and smart cranes, enhanced with AI driven advanced control and perception capabilities that will allow them to act autonomously, handling a large variety of parts varying in size, shape and material, while being acceptable by both genders of workforce.

The developments will focus around 5 pillars:
1) Innovative, efficient and low consumption systems for storage, retrieval, conveying and pick-and-place using a multi-disciplinary approach combining technologies
2) Robust handling devices and systems, with integrated –AI driven- advanced control
3) User-friendly interfaces for robot/machine control and programming
4) Interoperable S/W and H/W interfaces
5) Industrial Pilot Cases for work piece handling in full production line

The technologies will be tested for flexibility, efficiency & user acceptance in three use cases from different productions sectors, aiming to demonstrate production line and cross sector applicability and adaptability: Elevators manufacturing, focusing on the assembly of electrical cabinets of lifts (KLEEMANN), Sportswear, focusing on warehouse logistics and packaging (DECATHLON) and Aeronautics production, focusing on production of large composite panels of aircraft wings (AERNNOVA).

More information & hyperlinks
Web resources: https://www.masterly-project.eu/ - MASTERLY Website
https://www.linkedin.com/company/masterly-project-eu/ - MASTERLY LinkedIn page
https://www.youtube.com/watch?v=wyxzj-jDUxg&t=1s - 1st Video Presentation
Start date: 01-01-2023
End date: 30-06-2026
Total budget - Public funding: 5 683 670,00 Euro - 5 683 670,00 Euro
Cordis data

Original description

Over the last years, production has been shifted from mass production to customization. The conventional production lines, traditionally focused on one product variant or one family of products do show their limitations to cope with the new needs. Moreover, unprecedented worldwide events, such as the recent pandemic crisis, indicated even more the need for flexible production systems that can rapidly switch production to a totally different one (e.g. automotive manufactures had to produce respirators, facemasks etc.).
As a response, MASTERLY aims to develop flexible robotic solutions, constituting of modular grippers combined with state-of-the-art robotic technologies, such as mobile, high and low payload industrial and collaborative robots and smart cranes, enhanced with AI driven advanced control and perception capabilities that will allow them to act autonomously, handling a large variety of parts varying in size, shape and material, while being acceptable by both genders of workforce.

The developments will focus around the following 5 pillars:
1) Innovative, efficient and low consumption systems for storage, retrieval, conveying and pick-and-place using a multi-disciplinary approach combining technologies
2) Robust handling devices and systems, with integrated –AI driven- advanced control
3) User-friendly interfaces for robot/machine control and programming
4) Interoperable S/W and H/W interfaces
5) Industrial Pilot Cases for work piece handling in full production line

The technologies will be tested for flexibility, efficiency & user acceptance in three use cases from different productions sectors, aiming to demonstrate production line and cross sector applicability and adaptability: Elevators manufacturing, focusing on the assembly of electrical cabinets of lifts (KLEEMANN), Sportswear, focusing on warehouse logistics and packaging (DECATHLON) and Aeronautics production, focusing on production of large composite panels of aircraft wings (AERNNOVA).

Status

SIGNED

Call topic

HORIZON-CL4-2022-TWIN-TRANSITION-01-04

Update Date

18-01-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all