Associated Results

The ARC robotic control system is extremely effective for bringing a robot / part to a specific and highly accurate location. However, it does not allow for accuracy along a path, so would not be appropriate for continuous path accuracy e.g. robotic milling or welding.

The large amount of metal in the cell (robots, parts) dramatically lowered the accuracy that was possible with the RFID positioning system. Rather than being able to track parts to a specific location, we could determine no better than if a part was inside or outside the cell. Active RFID tags may help mitigate this.

K-CMM technology was extremely effective, but subject to line-of-sight restrictions for large assemblies such as aerospace fuselages.

When integrating technologies and solutions from multiple equipment vendors, the challenge is almost always interoperability and standards compliance. The ARC system was comparatively simple to integrate and commission, but integration into the larger context of a manufacturing process with a SCADA and other physical devices was more of a challenge.


For flexible, reconfigurable systems where everything is connected together and must utilise a common data format, selecting the correct data format and a common structure for its use is key. B2MML worked very well for this application, but there is still scope for variation in the way terms and variables are defined, which must be settled on.

Converting an agreed process plan for manufacturing into the B2MML has some degree of automation, but also required a large amount of manual processing. More time should have been spent on automating this process.
Ideally, all components of the system would communicate directly with the service bus. Practically, not all devices will support the service bus, so use of an intermediary communication protocol such as OPC UA may be necessary. 

Although process control may all be centralised with a manufacturing service bus, safety systems may not be. This can cause unexpected system behaviour when the system starts a new process unless the safety system is fully understood by the users. 

Selection of flexible technologies and standards does not necessarily mean that any given implementation using those technologies will be flexible. A system implementation must be designed specifically to be flexible and future proof.