Laser-based technologies for creating structures in the range from nanometer up to millimeter size find many applications such as free form optics, photonics, multifunctional surfaces, lab-on-chip, etc. with a global market volume of > 200 billion euros. The original structures know as masters are the first step in the making of tools for key-enabling technologies like injection molding or nanoimprinting. Some of the current limitations in the laser lithography processes are the limited depth of the structures, small area and low speed at process level, high-power consumption in the laser interference lithography, and multiple and expensive processes required for the development of hierarchical multifunctional structures at industrial level.
The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with
- high depth (150 micrometer)
- dimensions in the range from 100 nm to sub-mm in XYZ,
- 2D&3D shape on flat surface,
- combining parallel & serial patterning,
- no need for external treatments on samples;
- increased speed (1 cm2/min) and large area (up to 2000 cm2),
- > 40% of reduction in the consumption of resources for the whole manufacturing process.
The OPTIMAL project uses self-learning algorithms to optimize the virtual photomask as well as integrates methods for an inline control of the laser patterning.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will reduce the energy consumption, avoid material waste, decrease costs, and lead time in many applications. The platform will potentiate the possibilities in the sustainable making of high quality, versatile, less costly masters for industrial manufacturing, as demonstrated in 4 use cases (optical lenses, multifunctional riblet structures, virtual reality lens, microfluidic chips).
Web resources: |
https://cordis.europa.eu/project/id/101057029
https://www.optimal-project.eu/ |
Start date: | 01-10-2022 |
End date: | 30-09-2026 |
Total budget - Public funding: | 5 616 876,00 Euro - 5 616 875,00 Euro |
Original description
Laser-based technologies for creating structures in the range from nanometer up to millimeter size find many applications such as free form optics, photonics, multifunctional surfaces, lab-on-chip, etc. with a global market volume of > 200 billion euros. The original structures know as masters are the first step in the making of tools for key-enabling technologies like injection molding or nanoimprinting. Some of the current limitations in the laser lithography processes are the limited depth of the structures, small area and low speed at process level, high-power consumption in the laser interference lithography, and multiple and expensive processes required for the development of hierarchical multifunctional structures at industrial level.The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with (i) high depth (150 micrometer), ii) dimensions in the range from 100 nm to sub-mm in XYZ, iii) 2D&3D shape on flat surface, (iv) combining parallel & serial patterning, (v) no need for external treatments on samples; vi) increased speed (1 cm2/min) and large area (up to 2000 cm2), vii) > 40% of reduction in the consumption of resources for the whole manufacturing process. The OPTIMAL project uses self-learning algorithms to optimize the virtual photomask as well as integrates methods for an inline control of the laser patterning.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will reduce the energy consumption, avoid material waste, decrease costs, and lead time in many applications. The platform will potentiate the possibilities in the sustainable making of high quality, versatile, less costly masters for industrial manufacturing, as demonstrated in 4 use cases (optical lenses, multifunctional riblet structures, virtual reality lens, microfluidic chips).
Status
SIGNEDCall topic
HORIZON-CL4-2021-TWIN-TRANSITION-01-03Update Date
27-10-2022The OPTIMAL platform will be validated through the manufacturing of master tools for four different use cases: a) full-polymer micro lenses for industrial optics, b) hierarchical multifunctional drag reduction riblet structures for aviation, c) free-form lens arrays for high-end virtual reality displays and d) microfluidic hierarchical structures for lab on chip medical devices.
The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with high depth, dimensions in the range from 100 nm to sub-mm, 2D&3D shape on flat surface, combining parallel & serial patterning, no need for external treatments on samples, increased speed and large area.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will allow for “first time right” fabrication of the required structures, lower consumption of resources, waste reduction, lower CO2 emissions, increase of productivity, and cost reduction.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will allow for “first time right” fabrication of the required structures, lower consumption of resources, waste reduction, lower CO2 emissions, increase of productivity, and cost reduction.
The OPTIMAL platform will be validated through the manufacturing of master tools for four different use cases: a) full-polymer micro lenses for industrial optics, b) hierarchical multifunctional drag reduction riblet structures for aviation, c) free-form lens arrays for high-end virtual reality displays and d) microfluidic hierarchical structures for lab on chip medical devices.