Improving industrial energy efficiency at European Manufacturing level requires the integration of energy data with advanced optimization techniques to guide a company decision making.
E2COMATION intends to address the optimization of energy usage, at multiple hierarchical layers of a manufacturing process as well as considering the whole life-cycle perspective across the value chain.
To this purpose, it aims at providing a cross-sectorial methodological framework and a modular technological platform to monitor, predict, evaluate impact of the behavior of a factory across energy and the life-cycle assessment dimensions, in order to adapt and optimize dynamically not only its real-time behavior over different time-scales, but also its strategic and sustainable positioning with respect to the complex supply and value chain it belongs to.
Its major objectives are:
- Holistic analysis of energy-related data streams for production performance forecasting;
- Life-cycle conceptual paradigm applied to digital twinning of factory assets;
- Factory-level integrated multi-objective optimization architecture;
- Modular and scalable automation platform for distributed monitoring and supervision;
- Comprehensive simulation environment enhanced with energy and environmental performance;
- Energy Aware Planning and Scheduling tool (EAP&S);
- Life Cycle Assessment and Costing tool (LCAC) integrated in a company Decision Support System;
- Sustainable Computer Aided Process Planning (s-CAPP);
- LCA-driven supply chain management (SCM) and business ecosystem.
For E2COMATION to be successful, it is fundamental that the effectiveness of its methodological approach and technological framework is proved in complex industrial scenarios, involving several factories of different sectors. This will be achieved by implementing the project platform in 2 completely different value chains, the food and drink one and the woodworking one, with 5 concurrent industrial use-cases.
Web resources: |
https://cordis.europa.eu/project/id/958410
https://e2comation.eu |
Start date: | 01-11-2020 |
End date: | 31-10-2024 |
Total budget - Public funding: | 10 560 000,00 Euro - 8 105 775,00 Euro |
Twitter: | @e2comation |
Original description
Improving industrial energy efficiency at European Manufacturing level requires the integration of energy data with advanced optimization techniques to guide a company decision making.E2COMATION intends to address the optimization of energy usage, at multiple hierarchical layers of a manufacturing process as well as considering the whole life-cycle perspective across the value chain. To this purpose, it aims at providing a cross-sectorial methodological framework and a modular technological platform to monitor, predict, evaluate impact of the behavior of a factory across energy and the life-cycle assessment dimensions, in order to adapt and optimize dynamically not only its real-time behavior over different time-scales, but also its strategic and sustainable positioning with respect to the complex supply and value chain it belongs to.
Its major objectives are:
- Holistic analysis of energy-related data streams for production performance forecasting;
- Life-cycle conceptual paradigm applied to digital twinning of factory assets;
- Factory-level integrated multi-objective optimization architecture;
- Modular and scalable automation platform for distributed monitoring and supervision;
- Comprehensive simulation environment enhanced with energy and environmental performance;
- Energy Aware Planning and Scheduling tool (EAP&S);
- Life Cycle Assessment and Costing tool (LCAC) integrated in a company Decision Support System;
- Sustainable Computer Aided Process Planning (s-CAPP);
- LCA-driven supply chain management (SCM) and business ecosystem.
For E2COMATION to be successful, it is fundamental that the effectiveness of its methodological approach and technological framework is proved in complex industrial scenarios, involving several factories of different sectors. This will be achieved by implementing the project platform in 2 completely different value chains, the food and drink one and the woodworking one, with 5 concurrent industrial use-cases.