Relevant:

Associated Results

The Beyond platform implemented provides valuable information with daily, monthly reports and deeper analysis in concrete operations that allows technicians to optimize the machine (industrial furnace) operation.

AI vision algorithm developed by TNO (WP3) seems to filter bad rated parts compared to installed algorithm. Advantage can be when product print is changing to catch-up development speed in traditional algorithm development. Test-case currently in progress.

Analyzing the test and process data, specific machine parameters can be adapted and optimized.

The Kolektor Digital Platform enables us to automatically collect the data from the shop floor. The Sinapro IIoT enables the connectivity of the pilot production line machines and related IoT devices for real-time production data acquisition and monitoring. The acquired data is afterward used in the off-line machine learning pipelines to produce machine vision predictive models to detect visual injection moulding defects. A pipeline for deploying such off-line machine learning to a HPC cluster is being developed at JSI within the scope of the Kolektor Pilot.

A correlation is realized within the production line between the overall process parameters and the product characteristics which are monitored at the end of the line in specific control modules.
With the help of INTRASOFT algorithm, several optimization are suggested for process parameters in order to optimize the final control workstation and to diminuate scraps and rework parts.

In addition to that, we can use CEA non-intrusive assets aquisition system to localize machine-oriented rootcauses (process deviation due to mechanical issue in the workstation for instance). This could lead to quickly identify a rootcause and to implement corrective actions effectively.
The non-intrusive notion comes from the fact that the asset monitoring (which can be a vibration from an accelerometer, a current, a temperature, ...) does not require any heavy integration, even the link with PLC is simplified with a standard exchange table for record triggers and the part informations.

The on-premise system is responsible of capturing the data from the different sensors and upload such information to the cloud. This task is performed by a software called FAGOR-DAS. Through FAGOR-DAS, data published by the sensors via PLCs using industrial protocols, such as OPC-UA, are sampled.  After this data is gathered, it is analysed and compacted locally (Edge computing). Such data can be visualized via a tool called Visual Stamp (local view of the manufacturing line). The same data is prepared to be sent to the cloud infrastructure.