Predictive Cognitive Maintenance Decision Support System
Cheaper and more powerful sensors, together with big data analytics, offer an unprecedented opportunity to track machine-tool performance and health condition. However, manufacturers only spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance.
The project will deploy and test a predictive cognitive maintenance decision-support system able to identify and localize damage, assess damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false alarms, provide more accurate failure detection, issue notices to conduct preventive maintenance actions and ultimately increase in-service efficiency of machines by at least 10%. The platform includes 4 modules:
- A data acquisition module leveraging external sensors as well as sensors directly embedded in the machine tool components,
- An artificial intelligence module combining physical models, statistical models and machine-learning algorithms able to track individual health condition and supporting a large range of assets and dynamic operating conditions,
- A secure integration module connecting the platform to production planning and maintenance systems via a private cloud and providing additional safety, self-healing and self-learning capabilities and
- A human interface module including production dashboards and augmented reality interfaces for facilitating maintenance tasks.
The consortium includes 3 end-user factories, 3 machine-tool suppliers, 1 leading component supplier, 4 innovative SMEs, 3 research organizations and 3 academic institutions. Together, we will validate the platform in a broad spectrum of real-life industrial scenarios (low volume, high volume and continuous manufacturing). We will also demonstrate the direct impact of the platform on maintainability, availability, work safety and costs in order to document the results in detailed business cases for widespread industry dissemination and exploitation.
Web resources: |
http://www.precom-project.eu
https://cordis.europa.eu/project/rcn/211729/factsheet/en |
Start date: | 01-11-2017 |
End date: | 31-10-2020 |
Total budget - Public funding: | 7 263 332,00 Euro - 6 146 402,00 Euro |
Call topic: | Novel design and predictive maintenance technologies for increased operating life of production systems (FoF.2017.09) |
Twitter: | @PreCoM_Project |
This is a set of Specific Objectives and Research & Innovation Objectives that is subject to a consultation in preparation of the Made In Europe Partnership. For more guidance about the consultation, please see www.effra.eu/made-in-europe-state-play.
Visit Twitter Page
Go to project forum
- Demonstration of PreCoM system in continuous ...
- Demonstration of PreCoM system in low-volume ...
- Demonstration of PreCoM system in high-volume...
- Knowledge based and cloud deployment report
- Safety Monitoring Report
- Model implementation report (I)
- Embedded sensor requirements specifications
- Project Quality Handbook
- Target parameter selection report
- AR/PLIV requirement specifications
- Model implementation report (II)
- Scheduling model report (I)
- LCC: system boundaries and functional unit te...
- Open data management plan
-
| LINNEAS UNIVERSITY (Coördinator)
-
| Bosch Rexroth GmbH
-
| CEA (COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES)
-
| CONSORCIO INSTITUTO TECNOLOXICO MATEMATICA INDUSTRIAL ITMATI
-
| E-MAINTENANCE SWEDEN AB
-
| GOMA CAMPS SOCIEDAD ANONIMA
-
| IK4-IDEKO
-
| LANTIER SL
-
| OVERBECK GMBH
-
| PARAGON S.A.
-
| SAKANA, SOCIEDAD COOPERATIVA
-
| SAVVY DATA SYSTEMS SL
-
| SPINEA SRO
-
| Soraluce S.Coop
-
| TECHNISCHE UNIVERSITAET CHEMNITZ