MUSIC | MUlti-layers control&cognitive System to drive metal and plastic production line for Injected Components
01-09-2012
-31-08-2016
01-09-2012
-31-08-2016
11-01-2015
-31-10-2018
01-10-2016
-30-09-2019
01-10-2016
-30-09-2019
01-09-2017
-28-02-2021
The standardisation goal in UPTIME is to simplify the integration of the components in the the UPTIME Platform and to make easier the integration of the UPTIME Platform in new industrial environments.
Below list of some relevant standards to UPTIME:
The Foresee Cluster Roadmap document includes section 5 on ‘Standardization aspects of Predictive Maintenance’ and ANNEX I ‘Standards application in ForeSee projects’:
01-10-2017
-31-03-2021
The Z-Break solution uses a variety of communication protocols. HTTP, OPC-UA, IEEE 802.15.4e and IEC WirelessHART. The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web. OPC UA supports two protocols. The binary protocol is opc.tcp://Server and http://Server is for Web Service. Otherwise OPC UA works completely transparent to the API. IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless personal area networks (LR-WPANs). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. WirelessHART is a wireless sensor networking technology based on the Highway Addressable Remote Transducer Protocol (HART). Developed as a multi-vendor, interoperable wireless standard, WirelessHART was defined for the requirements of process field device networks. Also, it uses the NGSI protocol. NGSI is a protocol developed to manage Context Information. It provides operations like managing the context information about context entities, for example the lifetime and quality of information and access (query, subscribe/notify) to the available context Information about context Entities.
The Foresee Cluster Roadmap document includes section 5 on ‘Standardization aspects of Predictive Maintenance’ and ANNEX I ‘Standards application in ForeSee projects’:
01-01-2020
-31-12-2023
KYKLOS 4.0 emphasises customisation and circular manufacturing. As a result, the candidate standards were determined in accordance with the following factors: (1) inputs from partners; (2) project requirements; (3) linked EU frameworks; (4) examination of scientific literature; and (5) standards inventory within the project's purview. The partners in KYKLOS 4.0 are interested in adopting standards in a variety of fields, such as digital transformation (such as OneM2M), sector-specific standards for pilots (such as ISO 14971:2019), data exchange and file formats (such as ISO 10303 and HDF5), or higher-level standards like ISO 27001 for information security management systems. The project requirements, acceptance in the worldwide community, comparable projects, or scientific papers were used to evaluate potential standards. Most of the identified standards are complementary and able to produce synergies in their incorporation. However, especially in the area of data exchange different standards suggest different solutions. No discrimination was made in terms of standards or points of origin.
The partners assessed the KYKLOS 4.0 standards and their adoption is continually improved, while the process is being carried out. In task T5.3, the team tried to assess various levels of interoperability in the procedure. Along with task T12.5, which is in charge of tracking the project's standardised context, a survey was started. Meetings with the various project partners were held on a regular basis, and the delivery was developed in line with the standardising framework noted in T12.5. The standards were chosen to be documented in a standardised fashion using the ArchiMate language. A list of other candidate standards that would be interesting to adopt in KYKLOS 4.0 is included in the documentation. Two standards—ISO 10303 and ISO 14048—that are highly pertinent to the scope of KYKLOS 4.0 are already in use by KYKLOS 4.0 pilots. With KYKLOS 4.0, ISO 10303 will be used beyond the CAD domain to prove its function in gathering and facilitating access to data linked to personalised and circular manufacturing. The data's long-term readability in this standard format is one of the issues that merit consideration. Project partners received instructions on how to use ISO 10303. KYKLOS 4.0 collaborates with Small Business Standards (SBS) to facilitate wide acceptance and utilization by the market.
Medical, electronic devices, electronic equipment, and automotive project pilots are already pursuing ISO 10303 (Industrial automation systems and integration — Product data representation and exchange) and ISO 14048 (Life cycle assessment and environmental management). The project currently has a good understanding of relevant standards. Modern algorithms have been used to identify various data reduction approaches, and a comprehensive model for fault relationships has been created. KYKLOS 4.0 will develop toolkits to implement auditing mechanisms.
01-12-2019
-31-05-2022
OPC UA (Kepware) – Many devices could not interface directly with the service bus, so OPC UA was used to extract data and publish it to the service bus.
OPC UA (Kepware) – Many devices could not interface directly with the service bus, so OPC UA was used to extract data and publish it to the service bus.
Used as the primary date exchange method for the demonstrator. Links items on the shop floor to the SCADA.
Used as the primary date exchange method for the demonstrator. Links items on the shop floor to the SCADA.
01-01-2019
-31-07-2022
QU4LITY project addresses a standardization strategy for zero-defect production. This project resolves missing or overlapping elements in various ZDM standardisation areas. The standards study makes use of the most recent findings from Task T9.2 regarding present-day activities and stakeholders in relation to the identified standardised ecosystem. In order to provide reliable solutions QU4LITY supports compliance with the five relevant cross-cutting standardised domains, QU4LITY conducts pilots on the most appropriate standard usage. All specifications aim at providing helpful recommendations for use for affected pilots:
1. Compliance Specification for Interoperability Standards
2. Compliance Specification for Safety and Security Standards
3. Compliance Specification for Artificial Intelligence Standards
4. Compliance Specification for Quality Standards
5. Compliance Specification for Reference Architecture Standards, Reference
Architecture Standards, Digital Models and Vocabularies
Overview of standards and compliance associated to demonstrators (pilots)
OPC_UA has been intensively applied in the Data_driven Digital Twin of existing production line