FACTS4WORKERS | Worker-Centric Workplaces in Smart Factories
01-12-2014
-30-11-2018
01-12-2014
-30-11-2018
01-01-2015
-31-12-2017
01-01-2019
-31-07-2022
The objective of the pilot is to enable smart machines with autonomous diagnosis based on machine condition monitoring.
FAGOR ARRASATE as a leading manufacturer of forming machines it is obliged to proactive participate in projects like QU4LITY and led solutions to the customers to improve the availability, performance and quality of their installations and get an optimum cost per part ratio.
FAGOR ARRASATE has a long experience in delivering press machines as well as providing the building blocks of such lines. A press machine is the product par excellence of FAGOR ARRASATE. A typical press machine is composed by two rigid platforms (head and base), a bed, a ram, and a mechanism as well as all the other surrounding components that guarantee the full automation and process control.
Historically, machine tool manufacturers have not had any information of the machine behaviour once they were working at the customer facilities. Maintenance actions by the machine tool supplier, where mainly started by a customer’s call and where mainly related to corrective actions, once the failure had already happened.
Currently many condition issues on the machine are detected afterwards, they appear when a quality matter is detected on the forming parts or a machine component is damaged, causing even machine stoppage. These problems are fixed by machine adjustment or changing programs or forming process parameters.
Consequently, the only way to avoid future problems is by preventive maintenance or machine adjustment actions. These are carried out either by the machine owner itself or external services which are sometimes delivered by FAGOR ARRASATE.
In QUALITY project, FAGOR ARRASATE will equip a press machine with a SMART CONNECT technology that provides data from the machine, to the owner and to the machine supplier. Within the context of Zero-Defect Manufacturing, FAGOR ARRASATE will develops Smart solutions that will anticipate and avoid failures, reduce downtimes and assure quality.
It has a great complexity from the point of view of the acquisition, measurement and transmission of the parameters and variables. The result that would be obtained from the QU4LITY project, would allow the customers of FAGOR ARRASATE to have total control of a zero defects manufacturing process at machine level and to know at any time how and under which conditions all the parts have been manufactured.
Within Qu4lity use case, GHI with the collaboration of Innovalia and SQS, is building a ZDM scenario based on the development of a smart and connected hot stamping process with the ability to correlate the furnace operation parameters with the quality control of the stamped parts, extending in this way the product lifecycle control loop, making the operator more involved in the process thanks to the new platform developed.
Kolektor's Qu4lity project is addressing the real-time injection moulding process monitoring-control. The scope of the pilot project is a production line where Kolektor produces one type of product. The aim of this pilot is to detect, possibly predict, and remove the cause of the process failure as soon as possible, ideally in real-time. Based on the collected data and by applying the control loops, advanced analytics, and artificial intelligence methods we are trying to better understand the moulding process, with the emphasis on detecting anomalies and failures as soon as possible.
The POWDER BED Additive technology will be considered to test new edge devices for process control, towards a ZDM result, and to work on data management and analytics to implement the whole manufacturing process by a platform approach.
Data monitored from the machine tool and meta-information generated by different applications running at edge level will be collected and elaborated by the data analysis tool to extract useful information to be sent to the decision support system.
Using the opportunities brought by the Qu4lity project, RiaStone with the collaboration of Synesis and IntraSoft, built a commercial grade ZDM implementation scenario, which brings to the ceramics industry the ability to implement Autonomous Quality Loops, which will add new approaches to production, promoting better and innovative defect management and production control methods, consistent with the integration of Zero defect Manufacturing processes, these being namely: in-line inspection technologies, and integration of ICT tools for autonomous, automatic, smart system decision taking
The production line in Amberg has a highly automated process with several test stations along the path.
Main technologies that will be adopted in this pilot:
Autonomy in factories is achieved by security systems that produce alerts and warnings, by training courses that does not require a trainer and by applications that signs daily jobs automatically to the most appropriate employees based on specific criteria.