Pilot - THYS Quality Management of Steering Gear based on Acoustic control
Project: QU4LITY
Updated at: 01-02-2024
Project: QU4LITY
Updated at: 01-02-2024
Project: QU4LITY
Updated at: 01-02-2024
Using the opportunities brought by the Qu4lity project, RiaStone with the collaboration of Synesis and IntraSoft, built a commercial grade ZDM implementation scenario, which brings to the ceramics industry the ability to implement Autonomous Quality Loops, which will add new approaches to production, promoting better and innovative defect management and production control methods, consistent with the integration of Zero defect Manufacturing processes, these being namely: in-line inspection technologies, and integration of ICT tools for autonomous, automatic, smart system decision taking
In the RiaStone Qu4lity Pilot the ZDM-AQL is implemented in a modular architecture, which includes both in-factory data processing, Edge processing Systems, Cloud processing systems, and Machine Learning processing Services.
The RiaStone Qu4lity Pilot goal is to recognize, detect, and reconfigure the production process parameters as soon as a failure is detected in real-time.
This process is based in the collected data, advanced analytics, machine learning image inspection methods
The data acquired through computer vision, is processed through machine learning algorithms and compared to an existing database of ~10000+ images already noted by human operators
Inspection results are fed into the synesis-consortium machine control platform that decides necessary changes to the machine parameters driving production in both Business Processes (1&2)
Project: QU4LITY
Updated at: 01-02-2024
The POWDER BED Additive technology will be considered to test new edge devices for process control, towards a ZDM result, and to work on data management and analytics to implement the whole manufacturing process by a platform approach.
Data monitored from the machine tool and meta-information generated by different applications running at edge level will be collected and elaborated by the data analysis tool to extract useful information to be sent to the decision support system.
The ambition is to create a modular monitoring and control system that can be used with many different sensors and process models. The models need to be adaptable to the actual task, for a specific geometry or dedicated material processing conditions. Real-time process and machine signals need to be analysed in by machine-learning algorithms to find structures and pattern related to the required key quality indicators (critical defects per track, distortion, keeping of dimensions).The system will be also connected to a higher-level factory data interface which allows to exchange process information and reassign the production strategy based on additional factory conditions.
Thanks to this new approach with modular adaptable signal processing system and a strong interaction with data space and simulation tools trough the platform, will be possible to detect anomaly and have anequipment condition reporting , reduce reject rate by application of data-driven process model that has been derived by AI algorithms, increase OEE by recommending process adjustments to the operator or directly change the parameters in real time, so to reduce also the operator costs.
Project: QU4LITY
Updated at: 01-02-2024
Project: QU4LITY
Updated at: 01-02-2024
Kolektor's Qu4lity project is addressing the real-time injection moulding process monitoring-control. The scope of the pilot project is a production line where Kolektor produces one type of product. The aim of this pilot is to detect, possibly predict, and remove the cause of the process failure as soon as possible, ideally in real-time. Based on the collected data and by applying the control loops, advanced analytics, and artificial intelligence methods we are trying to better understand the moulding process, with the emphasis on detecting anomalies and failures as soon as possible.
The acquired data is used in on-line prediction of defects. The predicted defects are used to adapt the visual quality inspection with an in-hand camera with a robot. The robot is guided to and between predetermined viewpoints associated with the predicted defects. The robot motion is generated autonomously on-line.
Project: QU4LITY
Updated at: 01-02-2024
1. Augmented Reality is improving supporting processes Change over, Maintenance and Training. Partner PACE will apply their AR technology to avoid utilization of human resource in Maintenance documents handling. Instead Technologies like smart glasses and Holo lens will be applied. Virtual assistants will guide Maintenances staff through maintenance and repair processes instead. Same is targeted for Training.
2. Visualisation of machine and process data in realtime will enable immediate intervention in case of abnormal behaviour.
Project: Fortissimo 2
Updated at: 03-10-2022
Project: SYMBIO-TIC
Updated at: 29-09-2022
Project: SYMBIO-TIC
Updated at: 29-09-2022
Updated at: 26-04-2021
Project: Fortissimo 2
Updated at: 22-03-2021
Updated at: 08-08-2019
Project: TWIN-CONTROL
Updated at: 13-02-2019
Project: PREVIEW
Updated at: 18-07-2018
Project: Fortissimo 2
Updated at: 23-06-2018
Project: Fortissimo 2
Updated at: 23-06-2018
At a certain point of integration, the correlation between overall process parameters and the output product characteristics could be realized in real time in order to adjust, without any Human action, the different parameters along the production line.
This is the ideal towards which we wish to achieve with our future production lines.